试题
题目:
如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF 求证:BE+CF>EF.
答案
证明:延长FD至G,使得GD=DF,连接BG,EG
∵在△DFC和△DGB中,
DF=DG
∠CDF=∠BDG
DC=DB
,
∴△DFC≌△DGB(SAS),
∴BG=CF,
∵在△EDF和△EDG中
DF=DG
∠FDE=∠GDE=90°
DE=DE
∴△EDF≌△EDG(SAS),
∴EF=EG
在△BEG中,两边之和大于第三边,
∴BG+BE>EG
又∵EF=EG,BG=CF,
∴BE+CF>EF.
证明:延长FD至G,使得GD=DF,连接BG,EG
∵在△DFC和△DGB中,
DF=DG
∠CDF=∠BDG
DC=DB
,
∴△DFC≌△DGB(SAS),
∴BG=CF,
∵在△EDF和△EDG中
DF=DG
∠FDE=∠GDE=90°
DE=DE
∴△EDF≌△EDG(SAS),
∴EF=EG
在△BEG中,两边之和大于第三边,
∴BG+BE>EG
又∵EF=EG,BG=CF,
∴BE+CF>EF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;三角形三边关系.
延长FD至G,使得GD=DF,连接BG,EG,易证△DFC≌△DGB,所以BG=CF易证△EDF≌△EDG所以EF=EG在△BEG中,两边之和大于第三边,所以BG+BE>EG又EF=EG,BG=CF,即可得出答案.
此题主要考查了全等三角形的判定与性质,根据已知正确作出辅助线延长FD至G,使得GD=DF是解题关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.