试题
题目:
(2012·宜昌)如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=
60°,则∠2的度数等于( )
A.75°
B.60°
C.45°
D.30°
答案
D
解:如图,根据题意得:∠ADC=∠BEF=90°,
∵∠1=60°,
∴∠A=90°-∠1=30°,
∵∠ACB=90°,
∴∠B=90°-∠A=60°,
∴∠2=90°-∠B=30°.
故选D.
考点梳理
考点
分析
点评
平行线的性质;余角和补角.
根据题意得:∠ADC=∠BEF=90°,又由直角三角形的性质,即可求得∠A的值,继而求得∠B的度数,然后求得∠2的度数.
此题考查了直角三角形的性质.此题难度不大,注意直角三角形中两锐角互余定理的应用是解此题的关键.
找相似题
(2013·平遥县模拟)如图,AB∥CD,∠BAC=120°,则∠C的度数是( )
(2013·绿园区模拟)如图,把一块含有45°角的直角三角板的两个顶点放直尺的对边上,如果∠1=115°,那么∠2的度数是( )
(2013·金台区一模)如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=( )
(2013·鹤壁二模)已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )
(2013·拱墅区一模)如图,已知四条直线a,b,c,d,其中a∥b,c⊥b,且∠1=50°.则∠2=( )