试题
题目:
如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A
1
,得∠A
1
;∠A
1
BC和∠A
1
CD的平分线交于点A
2
,则∠A
2
=
m
4
m
4
度.
答案
m
4
解:∵BA
2
是∠A
1
BC的平分线,CA
2
是∠A
1
CD的平分线,
∴∠1+∠A
2
=∠2,2∠1+∠A
1
=2∠2,
∴∠A
1
=2∠A
2
,
同理可得∠A=2∠A
1
,
∴∠A=4∠A
2
,
∵∠A=m°,
∴∠A
2
=
m
4
°.
故答案为:
m
4
.
考点梳理
考点
分析
点评
三角形内角和定理;三角形的外角性质.
根据角平分线的定义以及三角形的一个外角等于与它不相邻的两个内角的和利用△A
1
BC和△A
2
BC表示出∠2,然后求出∠A
1
和∠A
2
的关系,同理求出∠A与∠A
1
,从而求出∠A和∠A
2
的关系,即可得解.
本题考查了三角形的内角和定理,三角形的角平分线的定义,三角形的外角性质,逻辑推理性较强,用不同的三角形表示出∠2,然后求出后一个前一个角是后一个角的2倍是解题的关键.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( )
如图,已知∠B=30°,∠C=20°,∠1=120°,则∠A的度数是( )
如图,∠A、∠DOE和∠BEC的大小关系是( )
如图,∠B=50°,∠D=35°,∠CFD=65°,则∠A的度数为( )