试题
题目:
如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.
答案
解:∵∠DAE=55°,ADF平分∠CAE,
∴∠CAE=110°,
∵∠CAE是△ABC的外角,∠B=30°,
∴∠ACB=110°-30°=80°,
∴∠ACD=180°-80°=100°.
解:∵∠DAE=55°,ADF平分∠CAE,
∴∠CAE=110°,
∵∠CAE是△ABC的外角,∠B=30°,
∴∠ACB=110°-30°=80°,
∴∠ACD=180°-80°=100°.
考点梳理
考点
分析
点评
三角形的外角性质.
先根据角平分线的定义得出∠CAE的度数,再由三角形外角的性质得出∠ACB的度数,根据平角的定义即可得出结论.
本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( )
如图,已知∠B=30°,∠C=20°,∠1=120°,则∠A的度数是( )
如图,∠A、∠DOE和∠BEC的大小关系是( )
如图,∠B=50°,∠D=35°,∠CFD=65°,则∠A的度数为( )