试题

题目:
青果学院∠ACD为△ABC的一个外角,∠ABC、∠ACD的角平分线交于点P.
(1)若∠ABC=40°,∠ACD=110°,则∠P=
35°
35°

(2)若∠ACD-∠ABC=64°,则∠P=
32°
32°

(3)若∠A=76°,则∠P=
38°
38°

(4)若∠P=46°,则∠A=
92°
92°

(5)你能找出∠A与∠P之间的数量关系吗?请写出你找的数量关系,并说明理由.
答案
35°

32°

38°

92°

解:(1)∵PB、PC分别是∠ABC、∠ACD的角平分线,
∴∠PBC=
1
2
∠ABC=20°,∠PCD=
1
2
∠ACD=55°,
又∵∠PCD=∠PBC+∠P,
∴55°=20°+∠P,
解得∠P=35°;

(2)由三角形的外角性质可得,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,
∵PB、PC分别是∠ABC、∠ACD的角平分线,
∴∠PBC=
1
2
∠ABC,∠PCD=
1
2
∠ACD,
1
2
(∠A+∠ABC)=
1
2
∠ABC+∠P,
整理得,∠P=
1
2
∠A,
在△ABC中,∠ACD-∠ABC=∠A=64°,
∴∠P=
1
2
×64°=32°;

(3)∠A=76°,则∠P=
1
2
×76°=38°;

(4)∠P=46°,则∠A=2∠P=2×46°=92°;
(5)∠P=
1
2
∠A.
理由如下:由三角形的外角性质可得,∠ACD=∠A+∠ABC,∠PCD=∠PBC+∠P,
∵PB、PC分别是∠ABC、∠ACD的角平分线,
∴∠PBC=
1
2
∠ABC,∠PCD=
1
2
∠ACD,
1
2
(∠A+∠ABC)=
1
2
∠ABC+∠P,
整理得,∠P=
1
2
∠A.
故答案为:(1)35°,(2)32°,(3)38°,(4)92°.
考点梳理
三角形内角和定理;三角形的外角性质.
(1)根据角平分线的定义求出∠PBC和∠PCD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;
(2)(3)(4)(5)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACD与∠PCD,再根据角平分线的定义整理即可得到∠A与∠P的关系,然后代入数据计算即可得解.
本题考查了三角形的内角和定理与三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握性质与定理是解题的关键.
找相似题