试题
题目:
如图,∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F等于( )
A.360°-∠α
B.270°-∠α
C.180°+∠α
D.2∠α
答案
D
解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,
∵∠3=180°-∠CGE=180°-α,
∴∠1+∠F+180°-α=180°,
∴∠A+∠B+∠F=α,
同理:∠2+∠C+180°-α=180°,
∴∠D+∠E+∠C=α,
∴∠A+∠B+∠C+∠D+∠E+∠F=2α.
故选D.
考点梳理
考点
分析
点评
三角形的外角性质.
根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF,然后利用三角形的内角和定理列式整理即可得解.
本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( )
如图,已知∠B=30°,∠C=20°,∠1=120°,则∠A的度数是( )
如图,∠A、∠DOE和∠BEC的大小关系是( )
如图,∠B=50°,∠D=35°,∠CFD=65°,则∠A的度数为( )