试题
题目:
如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是( )
A.∠1=
1
2
(∠2-∠3)
B.∠1=2(∠2-∠3)
C.∠G=
1
2
(∠3-∠2)
D.∠G=
1
2
∠1
答案
C
解:∵AD平分∠BAC,EG⊥AD,∴∠1=∠AFE,
∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,
∴∠3=∠G+∠2+∠G,∠G=
1
2
(∠3-∠2).
故选C.
考点梳理
考点
分析
点评
三角形的外角性质;三角形内角和定理.
根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G=
1
2
(∠3-∠2).
本题考查了角平分线的定义以及多次利用外角的性质.
找相似题
(2013·湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
如图,∠ACD是△ABC的外角,∠ACD=80°,∠B=30°,则∠A=( )
如图,已知∠B=30°,∠C=20°,∠1=120°,则∠A的度数是( )
如图,∠A、∠DOE和∠BEC的大小关系是( )
如图,∠B=50°,∠D=35°,∠CFD=65°,则∠A的度数为( )