试题

题目:
青果学院△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
(1)如图1,若∠A=70°,求∠E的度数;
(2)如图2,若∠A=90°,求∠E的度数;
(3)如图3,若∠A=130°,求∠E的度数;
根据上述结果,你能得到什么样的一般性结论?
答案
解:(1)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=70°,
∴∠E=35°;

(2)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=90°,
∴∠E=45°;

(3)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=130°,
∴∠E=65°.

结论:∠E=
1
2
∠A.
理由:∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A.
解:(1)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=70°,
∴∠E=35°;

(2)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=90°,
∴∠E=45°;

(3)∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A,
∵∠A=130°,
∴∠E=65°.

结论:∠E=
1
2
∠A.
理由:∵△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,
∴∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,
∵∠ACD=∠A+∠ABC,
∴∠ECD=
1
2
∠ACD=
1
2
(∠A+∠ABC)=
1
2
∠A+∠EBC,
∴∠E=∠ECD-∠EBC=
1
2
∠A+∠EBC-∠EBC=
1
2
∠A.
考点梳理
三角形内角和定理;三角形的外角性质.
由△ABC中,∠ABC的平分线与∠ACB的外角∠ACM的平分线交于点E,根据角平分线的性质,可得∠ECD=
1
2
∠ACD,∠EBC=
1
2
∠ABC,然后利用三角形外角的性质,即可求得:∠ECD=
1
2
∠ACD=
1
2
∠A+∠EBC,∠E=∠ECD-∠EBC,则可求得∠E=
1
2
∠A;则可将(1)∠A=70°,(2)∠A=90°,(3)∠A=130°分别代入求解即可求得答案.
此题考查了三角形的外角的性质与角平分线的定义.此题难度适中,解此题的关键是注意数形结合思想与整体思想的应用.
找相似题