试题

题目:
青果学院(1)已知△ABC中,D、E分别是边AB、AC上的点,∠A=80°,∠C=70°,∠ADE=30°.求证:DE∥BC.
(2)阅读并补全下列命题的证明过程:
求证:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行.
已知:如图,直线AB、CD、EF在同一平面内,AB⊥EF于点M,CD⊥EF于点N.
求证:
AB∥CD
AB∥CD
青果学院
证明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定义).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定义).
∵∠
AME
AME
=∠
CNE
CNE

AB
AB
CD
CD

答案
AB∥CD

AME

CNE

AB

CD

(1)证明:∵∠A=80°,∠C=70°,
∴∠B=180°-∠A-∠C=180°-80°-70°=30°,
∵∠ADE=30°,
∴∠ADE=∠B=30°,
∴DE∥BC(同位角相等,两直线平行);

(2)求证:AB∥CD,
证明:∵AB⊥EF(已知),
∴∠AME=90°(垂直的定义).
∵CD⊥EF(已知),
∴∠CNE=90°(垂直的定义).
∵∠AME=∠CNE,
∴AB∥CD.
故答案为:AB∥CD,∠AME,∠CNE,AB,CD.
考点梳理
平行线的判定.
(1)根据三角形的内角和定理求出∠B=30°,再根据同位角相等,两直线平行即可判定DE∥BC;
(2)结合图形,根据证明过程可得∠AME=∠CNE,又这两个角是同位角,然后根据同位角相等两直线平行进行解答.
本题考查了平行线的判定,分析图形找出同位角相等是解本题的关键.
证明题.
找相似题