试题
题目:
如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据
同旁内角互补,两直线平行
同旁内角互补,两直线平行
.
答案
同旁内角互补,两直线平行
解:∵∠ABC=120°,∠BCD=60°,
∴∠ABC+∠BCD=120°+60°=180°,
∴AB∥CD(同旁内角互补,两直线平行).
考点梳理
考点
分析
点评
专题
平行线的判定.
由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB∥CD的判定条件:同旁内角互补,两直线平行.
本题考查的是平行线的判定,即内错角相等,两直线平行;同位角相等两直线平行;同旁内角互补两直线平行.
应用题.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )