试题
题目:
如图,E、F分别在AB、CD上,∠1=∠D,∠2与∠C互余,EC⊥AF.
求证:AB∥CD.
答案
证明:∵EC⊥AF,
∴∠1+∠C=90°,
又∵∠2+∠C=90°,
∴∠1=∠2,
∵∠1=∠D,
∴∠2=∠D,
∴AB∥CD.
证明:∵EC⊥AF,
∴∠1+∠C=90°,
又∵∠2+∠C=90°,
∴∠1=∠2,
∵∠1=∠D,
∴∠2=∠D,
∴AB∥CD.
考点梳理
考点
分析
点评
专题
平行线的判定.
因为EC⊥AF,所以∠1+∠C=90°,又因为∠2+∠C=90°,根据同角的余角相等可得∠1=∠2,已知∠1=∠D,则有∠2=∠D,故AB∥CD.此题方法不唯一,正确就行.
解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.注意同角的余角相等及等量代换的应用.
证明题.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )