试题
题目:
如图,请你写出一个能判断AB∥CD的条件
∠2=∠3
∠2=∠3
.
答案
∠2=∠3
解:答案不唯一.如填∠2=∠3.依据是内错角相等,两直线平行.
考点梳理
考点
分析
点评
专题
平行线的判定.
要判断AB∥CD,要看它们的截线所构成的“三线八角”图中各角的位置关系,根据平行线的判定定理解答.
本题考查平行线的判定定理,即
内错角相等两直线平行;
同位角相等两直线平行;
同旁内角互补两直线平行.
开放型.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )