试题
题目:
如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.
答案
解:CF∥BD.理由如下:
∵BD⊥BE,
∴∠1+∠2=90°;
∵∠1+∠C=90°,
∴∠2=∠C.
∴CF∥BD.
解:CF∥BD.理由如下:
∵BD⊥BE,
∴∠1+∠2=90°;
∵∠1+∠C=90°,
∴∠2=∠C.
∴CF∥BD.
考点梳理
考点
分析
点评
专题
平行线的判定;垂线.
因为BD⊥BE,所以∠1+∠2=90°,又因为∠1+∠C=90°,则有∠2=∠C,故CF∥BD.
解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
探究型.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )