试题
题目:
如图,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断EF∥BD吗?为什么?
答案
解:EF∥BD;理由如下:
∵∠AED=60°,EF平分∠AED,
∴∠FED=30°,
又∵∠FEB=∠2=30°,
∴EF∥BD(内错角相等,两直线平行).
解:EF∥BD;理由如下:
∵∠AED=60°,EF平分∠AED,
∴∠FED=30°,
又∵∠FEB=∠2=30°,
∴EF∥BD(内错角相等,两直线平行).
考点梳理
考点
分析
点评
专题
平行线的判定.
本题可通过证直线EF与BD的内错角∠1和∠2相等,来得出EF∥BD的结论.
本题主要考查了平行线的判定方法:内错角相等,两直线平行.
探究型.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )