试题

题目:
如图①,△ABC中,DC,BD分别是∠ACB和∠ABC的平分线,且∠A=α
(1)用含α的代数识别是∠CDB;
(2)若把图①中∠ACB的平分线DC改为∠ACB的外角的平分线(如图②),怎样用含α的代数式别是∠CDB.
(3)若把图①中“DC,DB分别是∠ACB和∠ABC的平分线”改成“DC,BD分别是∠ACB和∠ABC的外角的平分线”,(如图③),怎样用含α的代数式别是∠CDB.
青果学院
答案
解:(1)∵∠A=α,∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的平分线,
∴∠DBC+∠DCB=
1
2
×(∠ABC+∠ACB)=90°-α,
∴∠CDB=180°-(∠DBC+∠DCB)=90°+
α
2


(2)设BC的延长线上有一点E.
∵∠DCE是△BCD的一个外角,
∴∠D=∠DCE-∠DBC,
同理:∠A=∠ACE-∠ABC,
∵CD和BD分别为角平分线,
∴∠DCE=
1
2
∠ACE,∠DBC=
1
2
∠ABC,
∴∠CDB=
α
2


(3)∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的外角的平分线,
∴∠DBC+∠DCB=
1
2
×[360°-(∠ABC+∠ACB)]=90°+
α
2

∴∠CDB=CDB=180°-(∠DBC+∠DCB)=90°-
α
2

解:(1)∵∠A=α,∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的平分线,
∴∠DBC+∠DCB=
1
2
×(∠ABC+∠ACB)=90°-α,
∴∠CDB=180°-(∠DBC+∠DCB)=90°+
α
2


(2)设BC的延长线上有一点E.
∵∠DCE是△BCD的一个外角,
∴∠D=∠DCE-∠DBC,
同理:∠A=∠ACE-∠ABC,
∵CD和BD分别为角平分线,
∴∠DCE=
1
2
∠ACE,∠DBC=
1
2
∠ABC,
∴∠CDB=
α
2


(3)∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵DC,BD分别是∠ACB和∠ABC的外角的平分线,
∴∠DBC+∠DCB=
1
2
×[360°-(∠ABC+∠ACB)]=90°+
α
2

∴∠CDB=CDB=180°-(∠DBC+∠DCB)=90°-
α
2
考点梳理
三角形的外角性质;角平分线的定义;三角形内角和定理.
(1)利用三角形的内角和定理,及角平分线定义;
(2)利用三角形的外角等于和它不相邻的两个内角的和求解;
(3)利用三角形的内角和定理,及角平分线定义,邻补角定义.
本题需注意综合利用三角形的内角和定理,及角平分线定义,利用三角形的外角等于和它不相邻的两个内角的和,邻补角定义等知识点.
找相似题