试题
题目:
如图,直线a∥b,∠1=28°,∠2=50°,则∠3=
78
78
度,∠3+∠4+∠5=
360
360
度.
答案
78
360
解:如图所示:过∠3的顶点作c∥a,
∵a∥b,
∴a∥b∥c,
∴∠1=∠6,∠7=∠2,
又∠3=∠6+∠7,
∴∠3=∠1+∠2=78°;
又∠4+∠6=∠7+∠5=180°
∴∠3+∠4+∠5=360°.
考点梳理
考点
分析
点评
专题
平行线的性质.
过∠3的顶点作已知直线的平行线,充分运用平行线的性质,不难发现:∠3=∠1+∠2,∠3+∠4+∠5=360°
注意此类题中常见的辅助线:构造已知直线的平行线.根据平行线的性质发现并证明:∠3=∠1+∠2;∠3+∠4+∠5=360°.
计算题.
找相似题
(2013·平遥县模拟)如图,AB∥CD,∠BAC=120°,则∠C的度数是( )
(2013·绿园区模拟)如图,把一块含有45°角的直角三角板的两个顶点放直尺的对边上,如果∠1=115°,那么∠2的度数是( )
(2013·金台区一模)如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=( )
(2013·鹤壁二模)已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )
(2013·拱墅区一模)如图,已知四条直线a,b,c,d,其中a∥b,c⊥b,且∠1=50°.则∠2=( )