试题
题目:
如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.
求证:∠FDE=∠A.
答案
证明:∵DE∥BA,
∴∠FDE=∠BFD;
∵DF∥CA,
∴∠A=∠BFD,
∴∠FEE=∠A.
证明:∵DE∥BA,
∴∠FDE=∠BFD;
∵DF∥CA,
∴∠A=∠BFD,
∴∠FEE=∠A.
考点梳理
考点
分析
点评
专题
平行线的性质.
根据平行线的性质证明即可.
本题考查了平行线性质定理:定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补. 定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
证明题.
找相似题
(2013·平遥县模拟)如图,AB∥CD,∠BAC=120°,则∠C的度数是( )
(2013·绿园区模拟)如图,把一块含有45°角的直角三角板的两个顶点放直尺的对边上,如果∠1=115°,那么∠2的度数是( )
(2013·金台区一模)如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=( )
(2013·鹤壁二模)已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )
(2013·拱墅区一模)如图,已知四条直线a,b,c,d,其中a∥b,c⊥b,且∠1=50°.则∠2=( )