试题
题目:
(2013·抚顺)如图,直线l
1
、l
2
被直线l
3
、l
4
所截,下列条件中,不能判断直线l
1
∥l
2
的是( )
A.∠1=∠3
B.∠5=∠4
C.∠5+∠3=180°
D.∠4+∠2=180°
答案
B
解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;
B、不能判断;
C、同旁内角互补,两直线平行,可以判断,故命题正确;
D、同旁内角互补,两直线平行,可以判断,故命题正确.
故选B.
考点梳理
考点
分析
点评
平行线的判定.
依据平行线的判定定理即可判断.
正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
找相似题
有下列说法:①若a=b
2
,则a>0;②相等的角是对顶角;③两条直线被第三条直线所截,同旁内角互补;④平行于同一条直线的两条直线平行.其中正确的说法有( )
如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的条件为( )
下列说法不正确的是( )
如图,给出四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判断a∥b的是( )
下列说法错误的是( )