试题

题目:
已知:有一个△ABC,且BC=2,AC=
3
,AB=1;将它放置于平面直角坐标系中;使BC在横轴上,顶点A在反比例函数y=
3
x
的图象上,试探求C点的坐标.
答案
解:∵△ABC中,BC=2,AC=
3
,AB=1,
∴∠A=90°,∠ABC=60°.
青果学院
①当点A在第一象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=
3
2
时,x=2,
∴A(2,
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD-CD=2-
3
2
=
1
2

∴点C的坐标为(
1
2
,0);
青果学院
当点A在第一象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=
3
2
时,x=2,∴A(2,
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD+CD=2+
3
2
=
7
2

∴点C的坐标为(
7
2
,0);
青果学院
当点A在第三象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=-
3
2
时,x=-2,
∴A(-2,-
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD-CD=2-
3
2
=
1
2

∴点C的坐标为(-
1
2
,0);
青果学院
当点A在第三象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=-
3
2
时,x=-2,
∴A(-2,-
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD+CD=2+
3
2
=
7
2

∴点C的坐标为(-
7
2
,0).
综上,可知点C的坐标为(
1
2
,0)或(-
1
2
,0)或(
7
2
,0)或(-
7
2
,0).
解:∵△ABC中,BC=2,AC=
3
,AB=1,
∴∠A=90°,∠ABC=60°.
青果学院
①当点A在第一象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=
3
2
时,x=2,
∴A(2,
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD-CD=2-
3
2
=
1
2

∴点C的坐标为(
1
2
,0);
青果学院
当点A在第一象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=
3
2
时,x=2,∴A(2,
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD+CD=2+
3
2
=
7
2

∴点C的坐标为(
7
2
,0);
青果学院
当点A在第三象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=-
3
2
时,x=-2,
∴A(-2,-
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD-CD=2-
3
2
=
1
2

∴点C的坐标为(-
1
2
,0);
青果学院
当点A在第三象限时,如上图,
过点A作AD⊥x轴于D.
∵在Rt△ABD中,∠ADB=90°,∠ABC=60°,AB=1,
∴BD=
1
2
,AD=
3
2

∵点A在反比例函数y=
3
x
上,
∴当y=-
3
2
时,x=-2,
∴A(-2,-
3
2
),
在Rt△ACD中,∠ADC=90°,∠ACD=30°,AD=
3
2

∴CD=
3
2

∴OC=OD+CD=2+
3
2
=
7
2

∴点C的坐标为(-
7
2
,0).
综上,可知点C的坐标为(
1
2
,0)或(-
1
2
,0)或(
7
2
,0)或(-
7
2
,0).
考点梳理
反比例函数图象上点的坐标特征.
由于反比例函数的图象是双曲线,点A可能在第一象限,也可能在第三象限,又因为斜边BC在x轴上,所以可能点B在点C的右边,也可能点B在点C的左边,故一共分四种情况.针对每一种情况,都可以运用三角函数的定义求出点C的坐标.
本题考查反比例函数的综合运用以及30°角的直角三角形的性质,本题的关键是看到C的位置有4种不同的情况.
找相似题