试题
题目:
(Ⅰ)因式分解:四6x
4
-四;
6xy
2
-9x
2
y-y
3
(Ⅱ)计算:(3x+四)(x+2);
[(x
2
+y
2
)-(x-y)
2
+2y(x-y)]÷4y.
答案
解(Ⅰ)16x
4
-1=(4x
2
-1)(4x
2
+1)
=(2x+1)(2x-1)(4x
2
+1);&nb着p;&nb着p;&nb着p;&nb着p;
6xy
2
-ex
2
y-y
3
=y(6xy-ex
2
-y
2
)
=-y(3x-y)
2
;
(Ⅱ)(3x+1)(x+2)
=3x
2
+6x+x+2
=3x
2
+7x+2;
[(x
2
+y
2
)-(x-y)
2
+2y(x-y)]÷4y,
=[x
2
+y
2
-(x
2
-2xy+y
2
)+2xy-2y
2
]÷4y
=[x
2
+y
2
-x
2
+2xy-y
2
+2xy-2y
2
]÷4y
=(4xy-2y
2
)÷4y
=x-
y
2
.
解(Ⅰ)16x
4
-1=(4x
2
-1)(4x
2
+1)
=(2x+1)(2x-1)(4x
2
+1);&nb着p;&nb着p;&nb着p;&nb着p;
6xy
2
-ex
2
y-y
3
=y(6xy-ex
2
-y
2
)
=-y(3x-y)
2
;
(Ⅱ)(3x+1)(x+2)
=3x
2
+6x+x+2
=3x
2
+7x+2;
[(x
2
+y
2
)-(x-y)
2
+2y(x-y)]÷4y,
=[x
2
+y
2
-(x
2
-2xy+y
2
)+2xy-2y
2
]÷4y
=[x
2
+y
2
-x
2
+2xy-y
2
+2xy-2y
2
]÷4y
=(4xy-2y
2
)÷4y
=x-
y
2
.
考点梳理
考点
分析
点评
整式的混合运算;提公因式法与公式法的综合运用.
(Ⅰ)先把原式进行因式分解,即可求出结果;先提取公因式y,再进行因式分解即可;
(Ⅱ)根据整式的混合运算法则和顺序分别进行计算,即可求出正确答案;
本题主要考查了整式的混合运算和因式分解;熟记完全平方公式的运用和整式混合运算的法则是解题的关键.
找相似题
把下列各式分解因式:
(h)25x
2
-h3
(2)a
3
b-ab
(3)-3x
2
+3xy-3y
2
(4)(m+n)
2
-4m(m+n)+4m
2
(5)(x+2)(x-3)+h3.
分解因式:
(1)7x
2
-63;
(2)(a
2
+4)
2
-16a
2
.
分解因式:a
5
-a
3
b
2
+
1
4
ab
4
.
因式分解
(1)x
2
-4y
2
=(x-2y)(x+2y)
(2)x
3
-4x
2
+4x=x(x-2)
2
.
因式分解:
(1)4x
2
-16;
(2)3m
2
n-12mn+12n.