试题

题目:
解不等式组
4(x-1)≤x+5①
7+2x≤3(x+2)②
,并求其整数解.
答案
解:由不等式①得x≤3
由不等式②得x≥1所以不等组的解集为1≤x≤3,
则整数解有1,2,3.
解:由不等式①得x≤3
由不等式②得x≥1所以不等组的解集为1≤x≤3,
则整数解有1,2,3.
考点梳理
一元一次不等式组的整数解.
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
计算题.
找相似题