试题
题目:
四边形ABCD内接于⊙O,BC是⊙O的直径,若∠ADC=120°,则∠ACB等于( )
A.30°
B.40°
C.60°
D.80°
答案
A
解:如图:
∵BC是⊙O的直径,
∴∠BAC=90°,
∵四边形ABCD内接于⊙O,∠ADC=120°,
∴∠B=180°-∠ADC=60°,
∴∠ACB=90°-∠B=30°.
故选A.
考点梳理
考点
分析
点评
圆周角定理;圆内接四边形的性质.
首先根据题意画出图形,然后由BC是⊙O的直径,可得∠BAC=90°,由圆的内接四边形的对角互补,可求得∠B的度数,继而可求得∠ACB的度数.
此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,解题的关键是根据题意画出图形,利用数形结合思想求解,注意掌握半圆(或直径)所对的圆周角是直角与圆的内接四边形的对角互补定理的应用.
找相似题
(2012·深圳)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内
OB
上一点,∠BMO=120°,则⊙C的半径长为( )
(2006·漳州)已知△ABC内接于⊙O,OD⊥AC于D,如果∠COD=32°,那么∠B的度数为( )
(2006·宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为( )
(2004·遂宁)如图,已知⊙O中,∠AOB的度数为80°,C是圆周上一点,则∠ACB的度数为( )
(2004·丰台区)如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于( )