试题
题目:
(1997·福州)已知:如图,在⊙O中,弦AB的长是半径OA的
3
倍,C为弧AB的中点.AB、OC相交于P点,求证:四边形OACB是菱形.
答案
证明:∵C为
AB
的中点,OC为半径,
∴PA=PB,AB⊥OC,
∵AP=
1
2
AB=
3
2
AO,
∴OP=
A
O
2
-A
P
2
=
A
O
2
-
3
4
A
O
2
=
1
2
OA=
1
2
OC,
∴PC=
1
2
OC,即OP=PC,
∴四边形OACB是平行四边形,
又∵AB⊥OC,
∴四边形OACB是菱形.
证明:∵C为
AB
的中点,OC为半径,
∴PA=PB,AB⊥OC,
∵AP=
1
2
AB=
3
2
AO,
∴OP=
A
O
2
-A
P
2
=
A
O
2
-
3
4
A
O
2
=
1
2
OA=
1
2
OC,
∴PC=
1
2
OC,即OP=PC,
∴四边形OACB是平行四边形,
又∵AB⊥OC,
∴四边形OACB是菱形.
考点梳理
考点
分析
点评
专题
垂径定理;勾股定理;菱形的判定;圆心角、弧、弦的关系.
由C为弧AB的中点,OC为半径,利用垂径定理的逆定理得到PA=PB,OC垂直于AB,由AP为AB的一半,根据题中条件用AO表示出AP,在直角三角形AOP中,利用勾股定理表示出OP,进而确定出OP=PC,即四边形ACBO对角线互相平分,可得出此四边形为平行四边形,再由对角线垂直的平行四边形为菱形即可得证.
此题考查了垂径定理,勾股定理,菱形的判定,以及平行四边形的判定,熟练掌握垂径定理是解本题的关键.
证明题.
找相似题
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2007·宁波二模)如图,游乐园的大观览车半径为25米,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟,某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是(观览处最低处距地面的高度忽略不计)( )
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
如图已知⊙O与△ABC三边均相交,在三边上截得的线段DE=FG=HK,∠A=50°,则∠BOC的度数为( )