试题
题目:
如图已知⊙O与△ABC三边均相交,在三边上截得的线段DE=FG=HK,∠A=50°,则∠BOC的度数为( )
A.130°
B.120°
C.115°
D.105°
答案
C
解:如图,连接OB、OC,作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,
∴∠AMO=∠AQO=90°,
∵∠A=50°,
∴∠MOQ=130°,
∵DE=FG=HK,
∴OM=ON=OQ,
∴OB、OC平分∠ABC和∠ACB,
∴∠BOC=
1
2
×(360°-130°)=115°.
故选C.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系.
分别作弦DE、FG、HK的弦心距,由于DE=FG=HK,所以弦的弦心距也相等,所以OB、CO是角的平分线,可以求出∠MOQ度数,进一步求出∠BOC的度数.
解决与弦有关的问题,一般要作弦的弦心距来解决问题.
找相似题
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2007·宁波二模)如图,游乐园的大观览车半径为25米,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟,某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是(观览处最低处距地面的高度忽略不计)( )
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
如图⊙O的半径为1cm,弦AB、CD的长度分别为
2
cm,1cm
,则弦AC、BD所夹的锐角α为( )