试题
题目:
如图所示,以等边三角形ABC的边BC为直径作⊙O交AB于D,交AC于E,判断
BD
,
DE
,
EC
之间的大小关系,并说明理由.
答案
解:相等.
如右图所示,连接OD,OE,
∵OB=OD=OE=OC,∠B=∠C=60°
∴△BOD与△COE都是等边三角形
∴∠BOD=∠COE=60°
∠DOE=180°-∠BOD-∠COE=60°
∴∠DOE=∠BOD=∠COE
∴
BD
=
DE
=
EC
.
解:相等.
如右图所示,连接OD,OE,
∵OB=OD=OE=OC,∠B=∠C=60°
∴△BOD与△COE都是等边三角形
∴∠BOD=∠COE=60°
∠DOE=180°-∠BOD-∠COE=60°
∴∠DOE=∠BOD=∠COE
∴
BD
=
DE
=
EC
.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系.
连接OD,OE,由∠B=∠C=60°,易证△BOD与△COE都是等边三角形,可得∠DOE=∠BOD=∠COE=60°,由圆周角定理知,
BD
=
DE
=
EC
.
本题利用了等边三角形的性质和判定及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
找相似题
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2007·宁波二模)如图,游乐园的大观览车半径为25米,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟,某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是(观览处最低处距地面的高度忽略不计)( )
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
如图已知⊙O与△ABC三边均相交,在三边上截得的线段DE=FG=HK,∠A=50°,则∠BOC的度数为( )