试题
题目:
如图,在Rt△ABC中,∠C=90°,∠B=25°,以C为圆心,以CA的长为半径的圆交AB于点D,则弧AD的度数为( )
A.25°
B.50°
C.45°
D.30°
答案
B
解:连接CD.
∵在△ABC中,∠ACB=90°,∠B=25°
∴∠A=90°-∠B=65°.
∵CA=CD,
∴∠CDA=∠CAD=65°(等边对等角),
∴∠ACD=50°
即弧AD的度数是50°.
故选B.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系.
首先根据直角三角形的两个锐角互余,得到∠A=90°-∠B=65°.再根据等边对等角以及三角形的内角和定理得到∠ACD的度数,进一步得到其所对的弧的度数.
本题考查了圆心角、弧、弦的关系.解题时,综合运用了三角形的内角和定理及其推论,根据同圆的半径相等和等边对等角的性质进行计算.
找相似题
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2007·宁波二模)如图,游乐园的大观览车半径为25米,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟,某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是(观览处最低处距地面的高度忽略不计)( )
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
如图已知⊙O与△ABC三边均相交,在三边上截得的线段DE=FG=HK,∠A=50°,则∠BOC的度数为( )