试题
题目:
如图,⊙O中弦AB垂直于直径CD于点E,则下列结论:①AE=BE;②
AC
=
BC
;③
AD
=
BD
;④EO=ED,其中正确的有( )
A.①②③④
B.①②③
C.②③④
D.①④
答案
B
解:由垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧知:
①AE=BE;②
AC
=
BC
;③
AD
=
BD
均正确,④错误,点E不一定是OD的中点.
故选B.
考点梳理
考点
分析
点评
垂径定理;圆心角、弧、弦的关系.
根据垂径定理判断解答.
本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧.
找相似题
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2007·宁波二模)如图,游乐园的大观览车半径为25米,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟,某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是(观览处最低处距地面的高度忽略不计)( )
如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径r=1,则PA+PB的最小值是( )
如图已知⊙O与△ABC三边均相交,在三边上截得的线段DE=FG=HK,∠A=50°,则∠BOC的度数为( )