试题
题目:
(2005·河北)工人师傅为了检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图1所示的工件槽,其中工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A,B,E三个接触点,该球的大小就符合要求.图2是过球心O及A,B,E三个接触点的截面示意图.已知⊙O的直径就是铁球的直径,
AB是⊙O的弦,CD切⊙O于点E,AC⊥CD,BD⊥CD.请你结合图1中的数据,计算这种铁球的直径.
答案
解:连接OA、OE,设OE与AB交于点P.如图
∵AC=BD,AC⊥CD,BD⊥CD
∴四边形ABDC是矩形
∵CD与⊙O切于点E,OE为⊙O的半径
∴OE⊥CD
∴OE⊥AB
∴PA=PB
∴PE=AC
∵AB=CD=16cm,∴PA=8cm,
∵AC=BD=PE=4cm,
在Rt△OAP中,由勾股定理得OA
2
=PA
2
+OP
2
即OA
2
=8
2
+(OA-4)
2
∴解得OA=10cm,所以这种铁球的直径为20cm.
解:连接OA、OE,设OE与AB交于点P.如图
∵AC=BD,AC⊥CD,BD⊥CD
∴四边形ABDC是矩形
∵CD与⊙O切于点E,OE为⊙O的半径
∴OE⊥CD
∴OE⊥AB
∴PA=PB
∴PE=AC
∵AB=CD=16cm,∴PA=8cm,
∵AC=BD=PE=4cm,
在Rt△OAP中,由勾股定理得OA
2
=PA
2
+OP
2
即OA
2
=8
2
+(OA-4)
2
∴解得OA=10cm,所以这种铁球的直径为20cm.
考点梳理
考点
分析
点评
垂径定理的应用;勾股定理.
连接OA、OE,设OE与AB交于点P.得到四边形ABDC是矩形,然后根据垂径定理得到PA=PB,PE=AC;然后根据已知条件利用勾股定理求出⊙O的半径OA的值,进而计算出这种铁球的直径.
本题考查了矩形的性质,垂径定理,以及勾股定理.
找相似题
(2011·南宁)一条公路弯道处是一段圆弧
AB
,点O是这条弧所在圆的圆心,点C是
AB
的中点,OC与AB相交于点D.已知AB=120m,CD=20m,那么这段弯道的半径为( )
(2008·临夏州)如图,是一条高速公路隧道的横截面,若它的形状是以O为圆心的圆的一部分,圆的半径OA=5米,高CD=8米,则路面宽AB=( )
(2007·资阳)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为
( )
(2006·湖北)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )
(2013·安徽模拟)如图所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是( )