试题
题目:
等腰梯形的高是4,对角线与下底的夹角是45°,则该梯形的中位线是( )
A.4
B.6
C.8
D.10
答案
A
解:如图所示:
BG为高,EF为中位线,
AB平行CD,AB是上底
BG⊥CD,AH⊥CD
∵BG⊥CD
∠BCG=45°,
则CG=4
又∵AH⊥CD
∠ADH=45°,
所以DH=4.
又DH+CG=CH+DG+HG+HG=CD+HG
其中HG=AB
所以AB+CD=CD+HG=DH+CG=8
所以中位线=
AB+CD
2
=
8
2
=4.
故选(A).
考点梳理
考点
分析
点评
梯形中位线定理.
由等腰梯形的高是4,对角线与下底的夹角是45°,可以得到上底+下底,中位线=
1
2
×(上底+下底),则可得到结果.
本题考查的知识比较全面,需要用到梯形和三角形中位线定理以及直角三角形的性质.
找相似题
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
①EF∥AD;②S
△ABO
=S
△DCO
;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正确的个数是( )
(2011·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的( )
(2011·来宾)在直角梯形ABCD中(如图所示),已知AB∥DC,∠DAB=90°,∠ABC=60°,EF为中位线,且BC=EF=4,那么AB=( )
(2010·台湾)如图梯形ABCD的两底长为AD=6,BC=10,中线为EF,且∠B=90°,若P为AB上的一点,且PE将梯形ABCD分成面积相同的两区域,则△EFP与梯形ABCD的面积比为( )
(2010·十堰)如图,已知梯形ABCD的中位线为EF,且△AEF的面积为6cm
2
,则梯形ABCD的面积为( )