试题

题目:
(1)化简:
1
3
-
x2
y
·(-4
-
y2
x
)÷
1
6
1
x3y

(2)已知x=
2
-1,求x2+3x-1的值.
答案
(1)解:原式=-
-x
3y
-y
·(-
4y
x
-x
)÷
1
-6x2y
xy

=(
x
3y
·
4y
-x
·
-6x2y
1
-y·(-x)
xy

=8x2y.

(2)解:x=
2
-1,
∴x2+3x-1,
=x2+2x+1+x-2,
=(x+1)2+x-2,
=(
2
-1+1)
2
+
2
-1-2,
=2+
2
-3,
=-1+
2

(1)解:原式=-
-x
3y
-y
·(-
4y
x
-x
)÷
1
-6x2y
xy

=(
x
3y
·
4y
-x
·
-6x2y
1
-y·(-x)
xy

=8x2y.

(2)解:x=
2
-1,
∴x2+3x-1,
=x2+2x+1+x-2,
=(x+1)2+x-2,
=(
2
-1+1)
2
+
2
-1-2,
=2+
2
-3,
=-1+
2
考点梳理
二次根式的乘除法;代数式求值;二次根式的定义;二次根式的性质与化简.
(1)根据二次根式的定义和已知求出x、y都是负数,先化成最简根式,再根据二次根式的乘除法法则进行计算即可.
(2)把代数式化成(x+1)2+x-2,代入后根据二次根式的混合运算法则进行计算即可.
本题考查了二次根式的性质和定义,代数式求值,二次根式的乘除法法则等知识点的应用,解此题的关键是把根式化成最简根式,注意:从题中得出x、y都是负数,
x2
=-x,
y2
=-y,题型较好,但是一道比较容易出错的题目.
计算题.
找相似题