试题
题目:
如图,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,垂足为E,AF⊥CD,垂足为CD延长线上的F.求证:△ABE≌△ADF.
答案
证明:如图,∵AC平分∠BCD,AE⊥BC,AF⊥CD,
∴AE=AF,∠AEB=∠AFD=90°,
∴在Rt△ABE与Rt△ADF中,
AE=AF
AB=AD
,
∴Rt△ABE≌Rt△ADF.
证明:如图,∵AC平分∠BCD,AE⊥BC,AF⊥CD,
∴AE=AF,∠AEB=∠AFD=90°,
∴在Rt△ABE与Rt△ADF中,
AE=AF
AB=AD
,
∴Rt△ABE≌Rt△ADF.
考点梳理
考点
分析
点评
专题
全等三角形的判定;角平分线的性质.
首先,由角平分线的性质得到:AE=AF;
然后,结合已知条件,利用HL证得结论;
本题考查了全等三角形的判定与角平分线的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题
(2006·贵港)已知:如图,AD是△ABC的角平分线,且AB:AC=
3
:
2
,则△ABD与△ACD的面积之比为( )
△ABC中,∠C=90°,AD平分∠BAC,BC=8,BD=5,则点D到AB的距离等于( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )
如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E,若点Q是OC上与O、P不重合的另一点,则以下结论中,不一定成立的是( )
如图,在△ABC中,∠B=90°,AB=4,∠BAC的角平分线AD交BC于点D,BD=3,则点D到AC的距离是( )