试题
题目:
已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=
1
2
(AB+AD),求证:∠B与∠D互补.
答案
证明:在AB上截取AF=AD,连接CF,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
又AC=AC,
∴△ACF≌△ACD(SAS),
∴AF=AD,∠AFC=∠D,
∵AE=
1
2
(AB+AD),
∴EF=BE,
又∵CE⊥AB,
∴BC=FC,
∴∠CFB=∠B,
∴∠B+D=∠CFB+∠AFC=180°,
即∠B与∠D互补.
证明:在AB上截取AF=AD,连接CF,
∵AC平分∠BAD,
∴∠BAC=∠CAD,
又AC=AC,
∴△ACF≌△ACD(SAS),
∴AF=AD,∠AFC=∠D,
∵AE=
1
2
(AB+AD),
∴EF=BE,
又∵CE⊥AB,
∴BC=FC,
∴∠CFB=∠B,
∴∠B+D=∠CFB+∠AFC=180°,
即∠B与∠D互补.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;角平分线的性质.
可在AB上截取AF=AD,可得△ACF≌△ACD,得出∠AFC=∠D,再由线段之间的关系AE=
1
2
(AB+AD)得出BC=CF,进而通过角之间的转化即可得出结论.
本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练运用三角形的性质求解一些简单的计算、证明问题.
证明题.
找相似题
(2006·贵港)已知:如图,AD是△ABC的角平分线,且AB:AC=
3
:
2
,则△ABD与△ACD的面积之比为( )
△ABC中,∠C=90°,AD平分∠BAC,BC=8,BD=5,则点D到AB的距离等于( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )
如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E,若点Q是OC上与O、P不重合的另一点,则以下结论中,不一定成立的是( )
如图,在△ABC中,∠B=90°,AB=4,∠BAC的角平分线AD交BC于点D,BD=3,则点D到AC的距离是( )