试题
题目:
如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )
A.①②③④
B.①②③
C.④
D.②③
答案
A
解:∵点P到AE、AD、BC的距离相等,
∴点P在∠BAC的平分线上,故①正确;
点P在∠CBE的平分线上,故②正确;
点P在∠BCD的平分线上,故③正确;
点P在∠BAC,∠CBE,∠BCD的平分线的交点上,故④正确,
综上所述,正确的是①②③④.
故选A.
考点梳理
考点
分析
点评
角平分线的性质.
根据在角的内部到角的两边距离相等的点在角的平分线上对各小题分析判断即可得解.
本题考查了角平分线的性质,熟记在角的内部到角的两边距离相等的点在角的平分线上是解题的关键.
找相似题
(2006·贵港)已知:如图,AD是△ABC的角平分线,且AB:AC=
3
:
2
,则△ABD与△ACD的面积之比为( )
△ABC中,∠C=90°,AD平分∠BAC,BC=8,BD=5,则点D到AB的距离等于( )
如图,在△ABC中,AD是△ABC中∠BAC的平分线,且BD>DC,则下列说法中正确的是( )
如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于D,PE⊥OB于E,若点Q是OC上与O、P不重合的另一点,则以下结论中,不一定成立的是( )
如图,在△ABC中,∠B=90°,AB=4,∠BAC的角平分线AD交BC于点D,BD=3,则点D到AC的距离是( )