数学
△ABC中,∠B=90°,BD是斜边AC上的高. 求证:BD
2
=AD·CD.
如图,△ABC中,∠B=90°,AB=8cm,BC=6cm.点P从点B以1cm/s的速度向点C运动,点Q从点C以2cm/s的速度向点A运动,两点同时出发,运动的时间为t秒(0≤t≤5).过点Q作直线QD∥BC,交AB于点D,连接PD、PQ.
(1)用含有t的代数式表示DQ的长;
(2)是否存在某一时刻t,使得△DPQ为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)以线段PC为直径作⊙O.
①在运动过程中,求当动点Q在⊙O内部时t的取值范围;
②连接OD,交线段PQ于点E,求点E恰好落在⊙O上时t的值.
已知,如图①,直角梯形ABCD,AB∥CD,∠A=90°,DC=6,AB=12,BC=10.Rt△EFG(∠EGF=90°)的边EF与BC完全重合,FG与BA在同一直线上.现将Rt△EFG以3cm/s的速度水平向左作匀速平移(如图②),EF、EG分别交AC于点H、Q,同时点M以
5
2
cm/s的速度从点B出发沿BC向点C作匀速运动,连接FM,当点E运动到点D时,Rt△EFG和点M都停止运动.设点M运动的时间为t(s)
(1)当点Q是AC的中点时,求t的值;
(2)判断四边形CHFM的形状,并说明理由;
(3)如图③,连接HM,设四边形ABMH的面积为s,求s与t的函数关系式及s的最小值.
如图,已知⊙M和⊙N相交于点A、B,过点B作CD⊥AB,分别交⊙M和⊙N于C、D,过点B任作一直线分别交⊙M和⊙N于E、F.
(1)求证:△AEF∽△ACD;
(2)证明AC、AD分别是⊙M和⊙N的直径;
(3)你认为AE与AF的比值是一个常数吗?是,请证明它;不是,请说出理由.
如图,已知正方形ABCD,将一块等腰直角三角尺的锐角顶点与A重合,并将三角尺绕点旋转,如图1,使它的斜边与BC交于点E,一条直角边与CD交于点F(E、F不与B、D重合),AE、AF分别与BD交于P、Q两点.
(1)求证:△ABP∽△ACF,且相似比为1:
2
;
(2)请再在图1中(不再添线和加注字母)找出两对相似比为1:
2
的非直角三角形的相似三角形;(直接写出)
(3)如图2,当M点旋转到BC的垂直平分线PQ上时,连接ON,若ON=8,求MQ的长.
如图,正方形ABCD的边长为1,点P是AD边上一动点,CE⊥BP于E,连DE,
(1)设AP=x,△DCE的面积为y,求y关于x的函数解析式,并写出x的取值范围.
(2)求AP为何值时,△CDE是等腰三角形?
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.
(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=
4
n
4
n
.
(3)当OE=1时,S
△EBF
=S
1
;OE=2时,S
△EBF
=S
2
;…,OE=n时,S
△EBF
=S
n
.则S
1
+S
2
+…+S
n
=
2n
2n
.(直接写出答案)
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,且AB=BC=4AD,E是AB上的一点,DE⊥EC.求证:CE平分∠BCD.
如图1,正方形ABCD的对角线相交于点M,正方形MNPQ与正方形ABCD全等,MN、MQ分别交正方菜ABCD的边于E、F两 点.
(1)试判断ME与MF之间的数量关系,并给出证明.
(2)若将题中的“正方形MNPQ与正方形ABCD”改为“矩形MNPQ与矩形ABCD”,且BC=2AB,其他条件不变,当矩形MNPQ与矩形ABCD的位置如图2所示时,请判断ME与MF之间的数量关系,并给出证明.
如图△ABC中,AB=AC,BD∥AC,CE∥AB,过点A的直线交BD于D,交CE于E;
(1)求证:△ABD∽△ECA;
(2)延长CD交AB于N,延长EB交CA于M,求证:AM=BN.
第一页
上一页
149
150
151
152
153
下一页
最后一页
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192