试题

题目:
由公式x2+(a+b)x+ab=(x+a)(x+b)可分解因式:
x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
x2-5x+6=x2+(-2-3)x+(-2)×(-3)=(x-2)(x-3)
依照这种变形,分解因式:
(1)x2+7x+6;
(2)x2+7x-8.
答案
解:(1)x2+7x+6
=x2+(1+6)x+1×6
=(x+1)(x+6);

(2)x2+7x-8
=x2+(-1+8)x-1×8
=(x+8)(x-1).
解:(1)x2+7x+6
=x2+(1+6)x+1×6
=(x+1)(x+6);

(2)x2+7x-8
=x2+(-1+8)x-1×8
=(x+8)(x-1).
考点梳理
因式分解-十字相乘法等.
(1)依据已知将方程变形,即可得到分解的结果;
(2)依据已知将方程变形,即可得到分解的结果.
此题考查了因式分解-十字相乘法,弄清题意是解本题的关键.
计算题.
找相似题