试题

题目:
青果学院(2012·鄂州模拟)如图,长为3米的质地均匀平板的中点能绕固定的支点转动,平板与水平地面的夹角为30°,在板上站两个小孩.已知30千克的甲小孩位于板的左端,20千克的乙小孩位于板的右端.现甲小孩以0.1米/秒的速度向右慢慢移动,
5
5
秒时间后平板开始转动;甲小孩在平板转动前的过程中,克服自身重力做功的功率为
15
15
瓦.(g=10牛/千克)
答案
5

15

解:青果学院如图所示:
(1)设平板开始转动时,甲移动的时间为t,
则甲走的路程:
AA′=vt,
此时甲对杠杆作用力的力臂:
OC=(OA-AA′)×cos30°=(
1
2
×3m-vt)×cos30°,
乙对杠杆作用力的力臂:
OD=OB×cos30°=
1
2
×3m×cos30°,
∵杠杆刚好转动、处于平衡,
∴G×OC=G×OD,
即:30kg×g×(
1
2
×3m-0.1m/s×t)×cos30°=20kg×g×
1
2
×3m×cos30°,
解得:t=5s.
(2)甲走的路程:
AA′=vt=0.1m/s×5s=0.5m,
甲沿竖直方向上升的高度:
h=AA′×sin30°=0.5m×
1
2
=0.25m,
甲克服重力做功:
W=Gh=mgh=30kg×10N/kg×0.25m=75J,
甲在这一过程中克服自身重力做功的功率:
P=
W
t
=
75J
5s
=15W.
故答案为:5;15.
考点梳理
杠杆的动态平衡分析;功率的计算.
(1)如图所示,设平板开始转动时,甲移动的时间为t,利用速度公式求甲走的路程,在三角形OCA′中求此时甲对杠杆作用力的力臂;在三角形OBD中求乙对杠杆作用力的力臂;利用杠杆平衡条件求时间t的大小;
(2)求出甲走的路程,在三角形OCA′中求甲沿竖直方向上升的高度,利用W=Gh求甲克服重力做功,再利用功率公式求甲在这一过程中克服自身重力做功的功率.
本题考查了学生对速度公式、重力公式、杠杆平衡条件的掌握和运用,画图帮助分析题意是解本题的比较理想的方法.
计算题;图析法.
找相似题