试题
题目:
当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是
-4<a<2
-4<a<2
.
答案
-4<a<2
解:当a=0,y=ax+6=6,所以满足y<10;
当a≠0,函数y=ax+6为一次函数,它是递增或递减的,
当-1≤x≤2时,y<10.
则有当x=1,y=ax+6=-a+6<10,解得a>-4;
当x=2,y=ax+6=2a+6<10,解得a<2;
所以-4<a<2,且a≠0.
综合可得常数a的取值范围是-4<a<2.
故答案为:-4<a<2.
考点梳理
考点
分析
点评
专题
一次函数的性质.
当a=0,y=ax+6=6<10,满足要求;当a≠0,函数y=ax+6为一次函数,在-1≤x≤2范围内,它是递增或递减的,则当x=1,
y=ax+6=-a+6<10;当x=2,y=ax+6=2a+6<10,解两个不等式,得到a的范围,最后综合得到a的取值范围.
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
计算题;分类讨论.
找相似题
(2012·滨州)直线y=x-1不经过( )
(2009·株洲)一次函数y=x+2的图象不经过( )
(2009·十堰)一次函数y=2x-2的图象不经过的象限是( )
(2002·广元)关于函数y=-x-2的图象,有如下说法:①图象过(0,-2)点;②图象与x轴交点是(-2,0);③从图象知y随x增大而增大;④图象不过第一象限;⑤图象是与y=-x平行的直线.其中正确说法有( )
(1997·上海)一次函数y=-2x+3的图象不经过的象限是( )