试题

题目:
设函数y=(m-3)x3-|m|+m+2,当m=
±2
±2
时,它是一次函数;当m=
-2
-2
时,它是正比例函数.
答案
±2

-2

解:当函数y=(m-3)x3-|m|+m+2是一次函数时,3-|m|=1,解得m=±2;
当函数y=(m-3)x3-|m|+m+2是正比例函数时,
m-3≠0
3-|m|=1
m+2=0
,解得m=-2.
故答案分别为:±2;-2.
考点梳理
一次函数的定义;正比例函数的定义.
分别根据一次函数及正比例函数的定义列出关于m的方程或不等式组,求出m的值即可.
本题考查的是一次函数及正比例函数的定义,根据题意列出关于m的方程或不等式组是解答此题的关键.
探究型.
找相似题