题目:
(2013·鞍山一模)底面积为50cm
2的平底圆柱形容器内盛满某种液体后,置于水平桌面中央(容器壁厚度不计),液体的压强与深度的关系如图所示.现将一个质量为0.08kg的金属块A用轻质细线悬挂在弹簧测力计下,再缓慢浸没于容器内的液体中,待金属块静止后,擦干容器外壁,弹簧测力计的示数如图所示.求:
(1)液体的密度是多少?
(2)金属块排开液体的质量是多少?
(3)剪断细线,金属块下沉到容器底部,此时容器对桌面的压强如何变化?为什么?(g=10N/kg)
答案
解:(1)由图知,当h=4cm=4×10
-2m时,p=4×10
2Pa,
∵p=ρ
液gh,
∴ρ
液=
=
=1.0×10
3kg/m
3;
(2)金属块的重力:
G
金=m
金g=0.08kg×10N/kg=0.8N,
弹簧测力计的分度值为0.1N,示数F′=0.5N,
金属块收到的浮力:
F
浮=G
金-F′=0.8N-0.5N=0.3N,
根据阿基米德原理可得:
F
浮=G
排=m
排g,
m
排=
=
=0.03kg;
(3)放入金属球后,整个容器对桌面的压力变大,接触面积不变,根据公式p=
可知容器对水平桌面的压强变大.
答:(1)液体的密度是1.0×10
3kg/m
3;
(2)金属块排开液体的质量是0.03kg;
(3)放入金属球后,整个容器对桌面的压力变大,接触面积不变,根据公式p=
可知容器对水平桌面的压强变大.
解:(1)由图知,当h=4cm=4×10
-2m时,p=4×10
2Pa,
∵p=ρ
液gh,
∴ρ
液=
=
=1.0×10
3kg/m
3;
(2)金属块的重力:
G
金=m
金g=0.08kg×10N/kg=0.8N,
弹簧测力计的分度值为0.1N,示数F′=0.5N,
金属块收到的浮力:
F
浮=G
金-F′=0.8N-0.5N=0.3N,
根据阿基米德原理可得:
F
浮=G
排=m
排g,
m
排=
=
=0.03kg;
(3)放入金属球后,整个容器对桌面的压力变大,接触面积不变,根据公式p=
可知容器对水平桌面的压强变大.
答:(1)液体的密度是1.0×10
3kg/m
3;
(2)金属块排开液体的质量是0.03kg;
(3)放入金属球后,整个容器对桌面的压力变大,接触面积不变,根据公式p=
可知容器对水平桌面的压强变大.