试题

题目:
青果学院(2010·平谷区二模)在水平桌面上放着甲、乙两杯液体,甲内液体密度为ρ,乙内液体密度为ρ.两容器中装有完全一样的小球,静止时如图所示,小球在甲中有五分之一露出液面.取出小球后,容器中A、B两点的压强相等,已知hA=2hB,此时两容器底所受液体压强之差为(  )



答案
D
解:设小球的重力为G,体积为V,两小球处于平衡状态,
由平衡条件得:ρg
4
5
V=G,ρgV=G,则ρ=
4
5
ρ
容器中A、B两点的压强相等,已知hA=2hB
此时两容器底所受液体压强之差△p=ρghAghB=1.2ρghB
故选D.
考点梳理
液体的压强的计算.
甲液体中小球漂浮,乙液体中小球悬浮,两小球完全相同,它们在两种液体中受到的浮力相同,由浮力公式求出两种液体的密度关系,然后由液体压强公式求出容器底部受到的压强差.
本题考查了数液体压强之差问题,应用浮力公式、液体压强公式即可正确解题.
压强、液体的压强.
找相似题