试题
题目:
如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)
答案
解:
则点P为所求.
解:
则点P为所求.
考点梳理
考点
分析
点评
专题
作图—基本作图.
到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.
用到的知识点为:到一个角两边距离相等的点,在这个角的平分线上;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
方案型.
找相似题
(2013·咸宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于
1
2
MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
(2011·十堰)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是( )
(1998·浙江)画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是( )
(2013·东城区一模)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )
作法:以O为圆心,任意长为半径作弧,交OA,OB于点D,E.
分别以D,E为圆心,以大于
1
2
DE
的长为半径作弧,两弧在∠AOB内交于点C.
作射线OC.则OC就是∠AOB的平分线.
下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是( )