试题
题目:
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:
(1)从点A出发在图中画一条线段AB,使得AB=
10
;
(2)画出一个以(1)中的AB为边的等腰三角形,使另两个顶点在格点上,且另两边的长度都是无理数.
答案
解:(1)线段AB就是所求的线段;
(2)△ABC就是所求的三角形.
解:(1)线段AB就是所求的线段;
(2)△ABC就是所求的三角形.
考点梳理
考点
分析
点评
专题
作图—代数计算作图.
(1)画一个直角边长为1,3的直角三角形,斜边即为所求的线段;
(2)可画一个边长分别为
10
,
10
,2
5
的三角形.
考查格点中无理线段及三角形的画法;长为无理数的线段通常应整理为两直角边为有理数的直角三角形的斜边长.
作图题.
找相似题
(2006·恩施州)请你利用下图,设计一个能求
1
2
+
1
2
2
+
1
2
3
+
1
2
4
+…+
1
2
n
的值的几何图形.
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三角形,使它的三边长都是有理数;
(2)在图2中,画一个等腰三角形,使它的一条边长为2
2
,另两边长为无理数.
(1)有若干块长方形和正方形硬纸片如图1所示.用若干块这样的硬纸片拼成一个新的长方形,如图2.
①用两种不同的方法,计算图2中长方形的面积;
②我们知道:同一个长方形的面积是确定的数值.
由此,你可以得出的一个等式为:
(a+1)
2
=a
2
+2a+1
(a+1)
2
=a
2
+2a+1
.
(2)有若干块长方形和正方形硬纸片如图3所示.请你用拼图等方法推出一个完全平方公式,画出你的拼图并说明推出的过程.
如图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可得一些
线段.请在所给网格中按下列要求画出图形.
(1)画一条线段,并简要说明理由;
(2)以(1)中的AB为一边,画一个边长均为无理数的直角三角形.
请在下图(单位长度是1)的方格中画出两个以AB为边的三角形ABC,使三角形面积为2.5.(要求:点C在格点上,其中一个为钝角三角形)