试题
题目:
如图所示,一段街道的两边沿所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等待小亮.
(1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置(用点C标出).
(2)已知:MN=30m,MD=12m,PN=36m.求(1)中的点C到胜利街口的距离.
答案
解:(1)如图1所示,CP为视线,点C为所求位置.
(2)∵AB∥PQ,MN⊥AB于M,
∴∠CMD=∠PND=90°.
又∵∠CDM=∠PDN,
∴△CDM∽△PDN,
∴
CM
PN
=
MD
ND
.
∵MN=30m,MD=12m,
∴ND=18m.
∴
CM
36
=
12
18
,
∴CM=24(m).
∴点C到胜利街口的距离CM为24m.
解:(1)如图1所示,CP为视线,点C为所求位置.
(2)∵AB∥PQ,MN⊥AB于M,
∴∠CMD=∠PND=90°.
又∵∠CDM=∠PDN,
∴△CDM∽△PDN,
∴
CM
PN
=
MD
ND
.
∵MN=30m,MD=12m,
∴ND=18m.
∴
CM
36
=
12
18
,
∴CM=24(m).
∴点C到胜利街口的距离CM为24m.
考点梳理
考点
分析
点评
专题
视点、视角和盲区.
本题以生活场景为载体,考查学生运用知识解决实际问题能力,本题可根据生活常识得第(1)问,第(2)问由相似三角形性质求出.
本题考查了视点、视角和盲区的知识,同时考查了学生综合运用知识解决现实生活中问题的能力.
应用题.
找相似题
(2010·淄博)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在( )
(2009·宁德)图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( )
(2006·十堰)如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )
(2009·塘沽区一模)如图左右并排的两颗大树的高度分别是AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=1.6米,且E、B、D在一条直线上,当观测者的视线FAC恰好经过两棵树的顶端时,四边形ABDC的区域是观测者的盲区,则此时观测者与树AB的距离EB等于( )
(2007·江西模拟)当你在笔直的公路上乘车由A至E的过程中(如图所示),发现路边有两栋建筑物,那么不能看到较高建筑物PD的路段是( )