试题
题目:
(2009·塘沽区一模)如图左右并排的两颗大树的高度分别是AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=1.6米,且E、B、D在一条直线上,当观测者的视线FAC恰好经过两棵树的顶端时,四边形ABDC的区域是观测者的盲区,则此时观测者与树AB的距离EB等于( )
A.8米
B.7米
C.6米
D.5米
答案
A
解:∵AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=1.6米,
∴EB=FH,BD=HK=5米,HB=KD=EF=1.6米,
设FH=x,则FK=FH+FK=x+5,AH=AB-BH=8-1.6=6.4米,CK=CD-KD=12-1.6=10.4米,
∵AH∥CD,
∴△AFH∽△CFK,
∴
AH
CK
=
FH
FK
,即
6.4
10.4
=
x
x+5
,
解得x=8米,
即EB=8米.
故选A.
考点梳理
考点
分析
点评
专题
相似三角形的应用;视点、视角和盲区.
先设FH=x,则FK=FH+FK=x+5,再根据AH∥CD,可得出△AFH∽△CFK,由相似三角形的对应边成比例即可求出x的值,进而得出EB的长.
本题考查的是相似三角形在实际生活中的应用,根据题意得出相似三角形,再利用相似三角形的对应边成比例解答是解答此题的关键.
探究型.
找相似题
(2010·淄博)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在( )
(2009·宁德)图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( )
(2006·十堰)如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )
(2007·江西模拟)当你在笔直的公路上乘车由A至E的过程中(如图所示),发现路边有两栋建筑物,那么不能看到较高建筑物PD的路段是( )
如图,是四个视力表中不同的“E”,它们距同一测试点O的距离各不相同,则在O点测得视力相同的“E”是( )