试题
题目:
如图所示,CD、EF表示高度不同的两座建筑物,已知CD高15米,小明站在A处,视线越过CD,能看到它后面的建筑物的顶端E,此时小明的视角∠FAE=45°,为了能看到建筑物EF上点M的位置,小明延直线FA由点A移动到点N的位置,此时小明的视角∠FNM=30°,则小明由点A移动到点N的距离是
15
3
-15
15
3
-15
米.
答案
15
3
-15
解:直角三角形CDN中,DN=CD÷tan30°=15
3
米,
直角三角形CDA中,AD=CD÷tan45°=15米,
因此,AN=DN-AD=(15
3
-15)米.
考点梳理
考点
分析
点评
视点、视角和盲区.
本题中,CD是直角三角形CDN和ACD的公共边,因此可用CD求出DN和AD,然后再求AN.
利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
找相似题
(2010·淄博)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在( )
(2009·宁德)图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为( )
(2006·十堰)如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )
(2009·塘沽区一模)如图左右并排的两颗大树的高度分别是AB=8米,CD=12米,两树的水平距离BD=5米,一观测者的眼睛高EF=1.6米,且E、B、D在一条直线上,当观测者的视线FAC恰好经过两棵树的顶端时,四边形ABDC的区域是观测者的盲区,则此时观测者与树AB的距离EB等于( )
(2007·江西模拟)当你在笔直的公路上乘车由A至E的过程中(如图所示),发现路边有两栋建筑物,那么不能看到较高建筑物PD的路段是( )