试题
题目:
如图,DC∥AB,OA=2OC,则△OCD与△OAB的位似比是
1:2
1:2
.
答案
1:2
解:∵DC∥AB
∴△OAB∽△OCD
∵△OCD与OAB的对应点的连线都过点O
∴△OCD与△OAB的位似
∴△OCD与△OAB的位似比为OC:OA=1:2.
考点梳理
考点
分析
点评
位似变换.
先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OCD与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.
本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.
找相似题
(2012·玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3
2
,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
(2012·咸宁)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则E点的坐标为( )
(2012·钦州)图中两个四边形是位似图形,它们的位似中心是( )
(2012·毕节地区)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是( )
(2011·六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )