试题

题目:
青果学院如图,已知B′C′∥BC,C′D′∥CD,D′E′∥DE.
(1)求证:四边形BCDE位似于四边形B′C′D′E′.
(2)若
AB′
B′B
=3
,S四边形BCDE=20,求S四边形B′C′D′E′
答案
(1)证明:∵B′C′∥BC,C′D′∥CD,D′E′∥DE,
AD′
AD
=
AC′
AC
=
C′D′
CD
=
E′D′
ED
=
B′C′
BC
=
B′E′
BE

又四边形BCDE与四边形B′C′D′E′对应顶点相交于一点A,
∴四边形BCDE位似于四边形B′C′D′E′;

(2)∵
AB′
B′B
=3
,∴
AB′
AB
=
3
4

∴四边形BCDE与四边形B′C′D′E′位似之比为:
4
3

∵S四边形BCDE=20,
∴S四边形B′C′D′E′=
20
(
16
9
)2
=
45
4

(1)证明:∵B′C′∥BC,C′D′∥CD,D′E′∥DE,
AD′
AD
=
AC′
AC
=
C′D′
CD
=
E′D′
ED
=
B′C′
BC
=
B′E′
BE

又四边形BCDE与四边形B′C′D′E′对应顶点相交于一点A,
∴四边形BCDE位似于四边形B′C′D′E′;

(2)∵
AB′
B′B
=3
,∴
AB′
AB
=
3
4

∴四边形BCDE与四边形B′C′D′E′位似之比为:
4
3

∵S四边形BCDE=20,
∴S四边形B′C′D′E′=
20
(
16
9
)2
=
45
4
考点梳理
位似变换.
(1)根据位似图形的定义判断出对应边关系进而得出答案;
(2)利用位似图形的性质得出位似之比,即可得出图形面积之比,即可得出答案.
此题主要考查了位似图形的性质以及其定义,根据图形得出位似之比是解题关键.
找相似题