试题
题目:
如图,在直角坐标系中,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的
1
4
,那么点B′的坐标是( )
A.(3,2)
B.(-2,-3)
C.(2,3)或(-2,-3)
D.(3,2)或(-3,-2)
答案
D
解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的
1
4
,
∴矩形OA′B′C′与矩形OABC的位似比为:1:2,
∵点B的坐标为:(6,4),
∴点B′的坐标是:(3,2)或(-3,-2).
故选D.
考点梳理
考点
分析
点评
位似变换;坐标与图形性质.
由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的
1
4
,根据相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比,又由点B的坐标为:(6,4),则可求得点B′的坐标.
此题考查了位似变换与坐标与图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握数形结合思想的应用.
找相似题
(2012·玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3
2
,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
(2012·咸宁)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则E点的坐标为( )
(2012·钦州)图中两个四边形是位似图形,它们的位似中心是( )
(2012·毕节地区)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是( )
(2011·六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )