试题
题目:
如图,正方形OABC和正方形DEFG是位似图形(其中点O,A,B,C的对应点分别是点D,E,F,G),点B的坐标为(1,1),点F的坐标为(4,2),则这两个正方形的位似中心的坐标是( )
A.(-2,0)
B.(2,0)
C.(-4,2)
D.(4,2)
答案
A
解:如图,连接FB并延长与x轴交于点P,则点P即为位似中心,
设OP=x,
∵点B的坐标为(1,1),点F的坐标为(4,2),
∴PA=x+1,PE=x+4,
∵正方形OABC和正方形DEFG的边AB、EF都与x轴垂直,
∴AB∥EF,
∴△PAB∽△PEF,
∴
PA
PE
=
AB
EF
,
即
x+1
x+4
=
1
2
,
解得x=2,
∵点P在x轴负半轴,
∴点P(-2,0).
故选A.
考点梳理
考点
分析
点评
位似变换;坐标与图形性质.
连接FB并延长与x轴交于点P,根据位似变换的性质,点P即为位似中心,然后设OP=x,表示出PA、PE,再根据△PAB和△PEF相似,利用相似三角形对应边成比例列式求出x,再根据点P在x轴负半轴上写出坐标即可.
本题考查了位似变换,坐标与图形性质,相似三角形的判定与性质,根据对应点的连线所在的直线经过位似中心是解题的关键.
找相似题
(2012·玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3
2
,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
(2012·咸宁)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则E点的坐标为( )
(2012·钦州)图中两个四边形是位似图形,它们的位似中心是( )
(2012·毕节地区)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是( )
(2011·六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )