试题
题目:
(2011·和平区模拟)如图,在平面直角坐标系中有△ABC,以O点为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标是( )
A.(8,6)(6,2)(2,4)
B.(-8,-6)(-6,-2)(-2,-4)
C.(8,-6)(6,-2)(2,-4)或(-8,6)(-6,2)(-2,4)
D.(8,6)(6,2)(2,4)或(-8,-6)(-6,-2)(-2,-4)
答案
D
解:∵A(4,3),B(3,1),C(1,2),
∴以O点为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标是(8,6),(6,2),(2,4)或(-8,-6),(-6,-2),(-2,-4),
故选:D.
考点梳理
考点
分析
点评
位似变换;坐标与图形性质.
首先写出A、B、C三点坐标,再根据相似比为2可得:A、B、C三点坐标分别乘以2或-2即可算出它的对应顶点的坐标.
此题主要考查了位似变换,以及坐标与图形的性质,关键是掌握若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(-kx,-ky).
找相似题
(2012·玉林)如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3
2
,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( )
(2012·咸宁)如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则E点的坐标为( )
(2012·钦州)图中两个四边形是位似图形,它们的位似中心是( )
(2012·毕节地区)如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是( )
(2011·六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形( )